MEASURING GOVERNMENT EXPENDITURE EFFICIENCIES TOWARDS PEACE AND HUMAN DEVELOPMENT

Ahmad Danu Prasetyo
School of Business and Management, InstitutTeknologi Bandung, Indonesia
Graduate School of Economics, Keio University, Japan
ahmad.danu@sbm-itb.ac.id

Alpha Nur Setyawan Pudjono
Faculty of Business and Commerce, Keio University, Japan
Directorate General of Taxes, Ministry of Finance Indonesia, Indonesia
alpha.pudjono@pajak.go.id

ABSTRACT

In this paper, we investigate the efficiency level of government expenditure in 82 countries towards the human development and peace index of the respective countries by using Data Envelopment Analysis (DEA) approach during 2007-2011. We found that only few countries that always being positioned in the efficient frontier during the sample period, namely: Japan, Nigeria, and Norway. By using Malmquist index approach, we also found that Cyprus has the largest government expenditure efficiency improvement.

Keywords: Government Expenditure Efficiencies, Human Development Index, Global Peace Index

1. Background

There is a new paradigm emerges concerning the public goals that should be accomplished by the government. The government is expected to go beyond traditional macroeconomic indicators and seek for higher perceptions of human welfare. Various indicators are then introduced in order to fulfill this demand. Two of them are Human Development Index and Global Peace Index that proxy human development level and perceptive peace across countries.

Previous studies show mixed results concerning the relationship between government expenditure and human development. Many economists agreed that government expenditure, especially in health and education sectors, would give a positive impact on human capital (Gupta et. al., 1998; Doryan, 2001) and also its productivity (Razmi et. al., 2012). Nevertheless, empirical results might find varieties on the significance of the sectorial expenditures. While agreed on the positive effects of government expenditures towards poverty reduction, Asgharet. al. (2012) found that the impact of government expenditures in health sector was insignificant in Pakistan. Suescún (2007) found that infrastructure spending dominates other forms of public spending (education, health, government consumption and transfers to low-wealth households) in terms of sizable positive effects on growth performance, welfare, human development and social progress in the Latin American countries.

In relation to peace, government expenditure in military service has been traditionally accepted as a medium to provide nation security. There are some cases where military expenditure does not hamper or even gives positive effect to the economy (Murdoch et al., 1997; Atesoglu, 2002;
Government’s efficiency is assumed to be the reason why countries with similar economic levels have a significant gap in the HDI level (Vierstraete, 2012). In addition, the Human Development Report 1991 also mentioned that some retrenchment could be made in government expenses while maintaining the HDI. Government’s efficiency is also considered as one of three pillars in erecting peace (IEP, 2012a). Interestingly, despite some beliefs that seen peace (in terms of security) as a foundation of human development (Alkire, 2002), the correlation between HDI and GPI somehow not very high. IEP (2012a) stated that the correlation between HDI and GPI scored -.573.

In this paper, we put the importance of the two indexes as measures of human development and peace as targeted outputs that should be pursued by the governments. Our data set includes government expenditures (in terms of percentage to GDP) in 82 countries ranged from 2007 to 2011. Data Envelopment Analysis (DEA) and Malmquist index are employed to measure the efficiency level of government expenditures on HDI and GPI in the respective countries, and the change of efficiency level during the analysis periods respectively. The rest of the paper is organized as follows: Section 2 will discuss about human development and peace in general and also DEA method and Malmquist index. Data and the methodology being used in this study will be explained in Section 3. The result of comparative efficiencies will be analyzed in section 4. And lastly, concluding remarks will appear in section 5

2. Literature Review

2.1. Human Development

Human development is an alternative measure other than the purely economic indicators that seen people as the real wealth of a nation. UNDP (1990) defined human development as the process of widening people's choices and the level of their achieved wellbeing. The development of HDI was inspired of the capabilities approach proposed by Amartya Sen that focus on what people are able to do and be so that they have more freedom to live the kind of life which they find valuable (Nussbaum & Sen, 1993).

Several dimensions have been proposed in the early development of human development (see Alkire, 2002). However UNDP had extracted them into three measures, i.e. longevity, education, and standard of living. The education component of the HDI is measured by mean of years of schooling for adults aged 25 years and expected years of schooling for children of school entering age. The health component is measured by life expectancy at birth. And the living standard is measured by GNI per capita (PPP). The scores for the three HDI dimension indices are then aggregated into a composite index using geometric mean (UNDP, 1990).

2.2. Peace

Abundant studies have been conducted to measure the effect of government expenditure, especially military spending, towards peace and economy. From these studies, common agreement was reached that there are negative correlation between the increasing of government
military spending and economy. Barro (2009) explained that during a war time, where military spending is significantly increased, private investments and net exports were hampered. It also overcrowds the non-military government purchase, and changes the consumption expenses. The terms “Peace Dividend” then used to explain phenomenon of immediate reverse of economy condition after a war is over or after military spending retrenchment.

Some economists still believe that military and defense spending is still important in providing security for the nation as well as helping to support and protect its national allies (IEP, 2012b). In addition, military spending is arbitrarily decided due to geopolitical situation rather than a function of economic factors (Abu-Bader&Abu-Qarn, 2003). While accepting military spending as a measure of peace, IEP (2012a) extend the definition of peace as “Positive Peace”, that is about the appropriate attitudes, institutions, and structures which when strengthened, lead to a more peaceful society.

<table>
<thead>
<tr>
<th>No.</th>
<th>Indicators</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Perceptions of criminality in society</td>
</tr>
<tr>
<td>2</td>
<td>Number of internal security officers and police 100,000 people</td>
</tr>
<tr>
<td>3</td>
<td>Number of homicides per 100,000 people</td>
</tr>
<tr>
<td>4</td>
<td>Number of jailed population per 100,000 people</td>
</tr>
<tr>
<td>5</td>
<td>Ease of access to weapons of minor destruction</td>
</tr>
<tr>
<td>6</td>
<td>Level of organized conflict (internal)</td>
</tr>
<tr>
<td>7</td>
<td>Likelihood of violent demonstrations</td>
</tr>
<tr>
<td>8</td>
<td>Level of violent crime</td>
</tr>
<tr>
<td>9</td>
<td>Political instability</td>
</tr>
<tr>
<td>10</td>
<td>Respect for human rights</td>
</tr>
<tr>
<td>11</td>
<td>Volume of transfers of major conventional weapons, as recipient (imports) per 100,000 people</td>
</tr>
<tr>
<td>12</td>
<td>Potential for terrorist acts</td>
</tr>
<tr>
<td>13</td>
<td>Number of deaths from organized conflict (internal)</td>
</tr>
<tr>
<td>14</td>
<td>Military expenditure as a percentage of GDP</td>
</tr>
<tr>
<td>15</td>
<td>Number of armed services personnel per 100,000 people</td>
</tr>
<tr>
<td>16</td>
<td>Funding of UN peacekeeping missions</td>
</tr>
<tr>
<td>17</td>
<td>Aggregate number of heavy weapons per 100,000 people</td>
</tr>
<tr>
<td>18</td>
<td>Volume of transfers of major conventional weapons as supplier (exports) per 100,000 people</td>
</tr>
<tr>
<td>19</td>
<td>Military capability / sophistication</td>
</tr>
<tr>
<td>20</td>
<td>Number of displaced people as a percentage of the population</td>
</tr>
<tr>
<td>21</td>
<td>Relations with neighboring countries</td>
</tr>
<tr>
<td>22</td>
<td>Number of external and internal conflicts fought</td>
</tr>
<tr>
<td>23</td>
<td>Estimated number of deaths from organized conflict (external)</td>
</tr>
</tbody>
</table>

There are 8 pillars of the positive peace that are interconnected to each other (IEP, 2012a), i.e. (1) Well-functioning government, (2) Sound business environment, (3) Equitable distribution of resources, (4) Acceptance of the rights of others, (5) Good relations with neighbors, (6) Free flow of information, (7) High levels of education, and (8) Low levels of corruption. These pillars
are then represented by 23 measures in determining the GPI score as can be seen in table 1. Contrary to HDI score, in valuating GPI, the lowest scores are the better.

3. Methodology
3.1. VRS DEA

Data envelopment analysis (DEA) is a non-parametric mathematical programming to estimate the inefficiency of outputs given inputs and vice versa. This method constructs an envelopment frontier over the data points such that all observed points lie on or below the production frontier (Coelli, 1996). This method, however, does not generate general relationship and only rely on the input-output ratio optimization. It firstly introduced by Farrell (1957) and then extended by Banker, Charnes, and Cooper (1984) to accommodate when the decision making units (DMUs) are operating at the non-optimal scale environment. These non-optimal scales might be caused by imperfect competition, constraint on resources, etc.

Coelli (1996) comprehensively discussed about DEA method. Assume there is data on K inputs and M outputs for each of N DMU. For the i-th DMU these are represented by the vector \(x_i \) and \(y_i \), respectively. The KxN input matrix, X, and the MxN output matrix, Y, represent the data of all N. Then the DMU’s problem is

\[
\max_{\phi, \lambda} \phi, \quad \text{s.t.} \quad -\phi y_i + Y\lambda \geq 0, \\
x_i - X\lambda \geq 0, \\
N\lambda = 1, \\
\lambda \geq 0
\] (1)

Where \(\phi \) is a scalar and \(\lambda \) is a Nx1 vector of constants. \(N\lambda \) is a Nx1 vector of ones. This approach forms a convex hull of intersecting planes which envelope the data points more tightly than the Constant Return Scales (CRS) conical hull, and thus provides technical efficiency scores which are greater than or equal to those obtained using CRS model. The value of \(\phi \) obtained will be the efficiency score for the i-th DMU. It will satisfy \(\phi \geq 1 \), with a value of 1 indicating a point on the frontier, and hence a technically efficient DMU. The proportional increase in outputs that could be achieved by the i-th DMU with input quantities held constant denotes by \(\phi - 1 \), while \(1/\phi \) defines the technical efficiency scores which varies between zero and one.

The CRS efficient frontier measures the maximum output-input slope from the original point, while VRS efficient frontier sorts the slopes starting from DMU which has minimum input. In figure 1, both DMU C and D are efficient in CRS and VRS method. DMU A, B, and E are considered efficient in VRS method but not in CRS method.
3.2. Malmquist Index

It is interesting to measure how much the efficiency improvement in aggregate has been obtained in a particular period. The measurement is possible by using Malmquist index – an extension of DEA which compares the technical efficiency at t+1 and t. Fare et. al. (1994) specifies Malmquist index as:

\[
m_0(y_{t+1}, x_{t+1}, y_t, x_t) = \left[\frac{d_0^t(x_{t+1}, y_{t+1})}{d_0^t(x_t, y_t)} \times \frac{d_0^{t+1}(x_{t+1}, y_{t+1})}{d_0^{t+1}(x_t, y_t)} \right]
\]

(2)

Where

\[
[d_0^t(x_t, y_t)]^{-1} = \max_{\phi, \lambda} \phi, \quad \text{St} \quad -\phi y_{it} + Y_t \lambda \geq 0, \quad x_{it} - X_t \lambda \geq 0, \quad \lambda \geq 0.
\]

(3)

\[
[d_0^{t+1}(x_{t+1}, y_{t+1})]^{-1} = \max_{\phi, \lambda} \phi, \quad \text{St} \quad -\phi y_{it+1} + Y_{t+1} \lambda \geq 0, \quad x_{it+1} - X_{t+1} \lambda \geq 0, \quad \lambda \geq 0.
\]

(4)

\[
[d_0^t(x_{t+1}, y_{t+1})]^{-1} = \max_{\phi, \lambda} \phi.
\]

(5)
\[d^{t+1}_{0} (x_t, y_t) \]^{-1} = \max_{\phi, \lambda \phi},
\]
\[St \]
\[-\phi y_{it+1} + Y_t \lambda \geq 0, \]
\[x_{it+1} - X_t \lambda \geq 0, \]
\[\lambda \geq 0. \]

Basically, the malmquist index measures the productivity of the production point \((x_{t+1}, y_{t+1}) \) relative to the production point \((x_t, y_t) \). An index value greater than one indicates positive improvement on efficiency.

4. Analysis

In general, Japan, Nigeria, and Norway have become the cutting edge in terms of government expenditure efficiency as they have always positioned on the efficient frontier during the analysis period. In more detailed disaggregate analysis, it can be found that Nigeria is excels in efficiencies towards both human development and peace in all years. Japanese government expenditure is always efficient towards peace during the 5 years analysis, but only efficient towards human development in 2007 and 2008. On the other hand, Norway is always positioned in the efficient frontier when output is human development, but only appears to be efficient in 2007 towards peace. There are several other countries that appeared on the efficient frontier occasionally, such as The US, Cambodia, Qatar, Australia, Switzerland, Denmark, New Zealand, and Bangladesh. The detailed list of efficient countries can be seen in Table 2 and Table 3.

<table>
<thead>
<tr>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Japan</td>
<td>Cambodia</td>
<td>Australia</td>
<td>Australia</td>
<td>Australia</td>
</tr>
<tr>
<td>Nigeria</td>
<td>Japan</td>
<td>Nigeria</td>
<td>Nigeria</td>
<td>Nigeria</td>
</tr>
<tr>
<td>Norway</td>
<td>Nigeria</td>
<td>Norway</td>
<td>Norway</td>
<td>Norway</td>
</tr>
<tr>
<td>US</td>
<td>Qatar</td>
<td>Switzerland</td>
<td>Switzerland</td>
<td>Switzerland</td>
</tr>
<tr>
<td>US</td>
<td>US</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2 Countries with efficient government expenditure towards human development
Table 3 Countries with efficient government expenditure towards peace

<table>
<thead>
<tr>
<th></th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cambodia</td>
<td>Cambodia</td>
<td>Japan</td>
<td>Bangladesh</td>
<td>Bangladesh</td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td>Denmark</td>
<td>New Zealand</td>
<td>Japan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Japan</td>
<td>New Zealand</td>
<td>Nigeria</td>
<td>Switzerland</td>
<td>New Zealand</td>
</tr>
<tr>
<td>Norway</td>
<td>Nigeria</td>
<td>Switzerland</td>
<td>Nigeria</td>
<td>Switzerland</td>
<td>New Zealand</td>
</tr>
</tbody>
</table>

![Figure 2](image2.png) Correspondence chart of Government Expenditure towards HDI and Inverted GPI in 2007

![Figure 3](image3.png) Correspondence chart of Government Expenditure towards HDI and Inverted GPI in 2008

![Figure 4](image4.png) Correspondence chart of Government Expenditure towards HDI and Inverted GPI in 2009

![Figure 5](image5.png) Correspondence chart of Government Expenditure towards HDI and Inverted GPI in 2010
We also measured the change of efficiencies by malmquist index with 2007 is taken as base year. Overall, the efficiencies of government expenditure in the analyzed countries are slightly decreased in 2008 and 2009, and then it became positive in 2010 and 2011. There are 23 countries that made positive improvement of the government expenditure efficiencies, ranked from the highest index score are Cyprus, Colombia, Zambia, Lebanon, Sri Lanka, Jordan, Indonesia, Switzerland, The Philippines, Turkey, Peru, Jamaica, Brazil, Israel, Honduras, Trinidad and Tobago, Poland, India, Botswana, Austria, Serbia, Moldova, and South Korea. Surprisingly it seems that only Switzerland that occasionally appeared on the efficient frontier while maintaining positive improvement of its government efficiency.

Averagely, the malmquist index score is equal to .983. This means that, in general, the sampled countries have become less efficient during the analysis period. By looking at the data we reckon that the negative improvement was happened because the increase in government expenditures were not balanced with the increase in HDI score and the decrease in GPI score.

<table>
<thead>
<tr>
<th>Year</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>0.971</td>
</tr>
<tr>
<td>2009</td>
<td>0.945</td>
</tr>
<tr>
<td>2010</td>
<td>1.010</td>
</tr>
<tr>
<td>2011</td>
<td>1.007</td>
</tr>
</tbody>
</table>
Figure 7 Geometric average score of Malmquist Index by countries
5. Conclusion

In this paper, we investigate the efficiency level of government expenditure in 82 countries towards the human development and peace index of the respective countries by using Data Envelopment Analysis (DEA) approach during 2007-2011.

In general, Japan, Nigeria, and Norway have become the cutting edge in terms of government expenditure efficiency as they have always positioned on the efficient frontier during the analysis period. There are several other countries that appeared on the efficient frontier occasionally, such as The US, Cambodia, Qatar, Australia, Switzerland, Denmark, New Zealand, and Bangladesh. There are 23 countries that made positive improvement of the government expenditure efficiencies measured by malmquist index where Cyprus has obtained the largest score. However, in general, the world has obtained negative efficiency improvement. We reckon that this was happened because the increase in government expenditures were not balanced with the increase in HDI score and the decrease in GPI score.

References

